Tricationic Ionic Liquids: Structural and Dynamical Properties via Molecular Dynamics Simulations

J Phys Chem B. 2017 Mar 2;121(8):1877-1892. doi: 10.1021/acs.jpcb.6b10766. Epub 2017 Feb 15.

Abstract

Three imidazolium-based linear tricationic ionic liquids (LTILs) have been simulated to study their structural and dynamical properties and obtain a fundamental understanding of the molecular basis of the microscopic and macroscopic properties of their bulk liquid phase. The effects of temperature and alkyl chain length on the physiochemical, transport, and structural properties of these LTILs have been investigated. A nonpolarizable all-atom force field, which is a refined version of the Canongia Lopes and Paudua force field, was adopted for the simulations. Densities, mean square displacements, self-diffusivities, viscosities, electrical conductivities, and transference numbers have been presented for various ions from MD simulations. The detailed microscopic structures have been discussed in terms of radial distribution functions and spatial distribution functions. The results show that, similar to that in monocationic and dicationic ILs (MILs and DILs, respectively), the anions are mainly organized around the imidazolium rings. The diffusion coefficients of the studied LTILs are smaller than those of both MILs and DILs, with comparable viscosities. Unlike those of MILs and DILs, the diffusion coefficients of the cations and anions of the studied LTILs increase with an increase in the length of the alkyl chain between the rings for LTIL-1 and LTIL-2 but then decrease for LTIL-3, which is in a good agreement with the trend of viscosity data. The calculated transference numbers show that, similar to that in MILs and DILs, cations have a major role in carrying electric current in LTILs, but this role increases from MILs to LTILs.

Publication types

  • Research Support, Non-U.S. Gov't