Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

Beilstein J Nanotechnol. 2016 Nov 15:7:1718-1726. doi: 10.3762/bjnano.7.164. eCollection 2016.

Abstract

2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor.

Keywords: acetone; flower-like 3D nanostructures; gas sensors; selectivity; titanium dioxide.