Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

Nano Lett. 2017 Mar 8;17(3):1504-1511. doi: 10.1021/acs.nanolett.6b04546. Epub 2017 Feb 6.

Abstract

Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

Keywords: 2D materials; MEMS; NEMS; Raman spectroscopy; Raman tomography; doping; nanoelectromechanical systems; noninvasive; strain; suspended graphene.

Publication types

  • Research Support, Non-U.S. Gov't