Kondo lattice heavy fermion behavior in CeRh2Ga2

J Phys Condens Matter. 2017 Apr 5;29(13):135601. doi: 10.1088/1361-648X/aa5b5d. Epub 2017 Jan 31.

Abstract

The physical properties of an intermetallic compound CeRh2Ga2 have been investigated by magnetic susceptibility [Formula: see text], isothermal magnetization M(H), heat capacity [Formula: see text], electrical resistivity [Formula: see text], thermal conductivity [Formula: see text] and thermopower S(T) measurements. CeRh2Ga2 is found to crystallize with CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). No evidence of long range magnetic order is seen down to 1.8 K. The [Formula: see text] data show paramagnetic behavior with an effective moment [Formula: see text]/Ce indicating Ce3+ valence state of Ce ions. The [Formula: see text] data exhibit Kondo lattice behavior with a metallic ground state. The low-T [Formula: see text] data yield an enhanced Sommerfeld coefficient [Formula: see text] mJ/mol K2 characterizing CeRh2Ga2 as a moderate heavy fermion system. The high-T [Formula: see text] and [Formula: see text] show an anomaly near 255 K, reflecting a phase transition. The [Formula: see text] suggests phonon dominated thermal transport with considerably higher values of Lorenz number L(T) compared to the theoretical Sommerfeld value L 0.