Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers

Langmuir. 2017 Feb 28;33(8):2050-2058. doi: 10.1021/acs.langmuir.6b04038. Epub 2017 Feb 15.

Abstract

The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 107 M-1 in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 1015 M-2 and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and water equilibrium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dielectric Spectroscopy
  • Microscopy, Atomic Force
  • Osmolar Concentration
  • Peptides / chemistry*
  • Quartz Crystal Microbalance Techniques

Substances

  • Peptides