Conformational structures of jet-cooled acetaminophen-water clusters: a gas phase spectroscopic and computational study

Phys Chem Chem Phys. 2017 Feb 8;19(6):4840-4848. doi: 10.1039/c6cp06863d.

Abstract

Jet-cooled acetaminophen (AAP)-water clusters, AAP-(H2O)1, were investigated by mass-selected resonant two-photon ionization (R2PI), ultraviolet-ultraviolet hole-burning (UV-UV HB), infrared-dip (IR-dip), and infrared-ultraviolet hole-burning (IR-UV HB) spectroscopy. Each syn- and anti-AAP rotamer has three distinctive binding sites (-OH, >CO, and >NH) for a water molecule, thus 6 different AAP-(H2O)1 conformers are expected to exist in the molecular beam. The origin bands of the AAP(OH)-(H2O)1 and AAP(CO)-(H2O)1 conformers (including their syn- and anti-conformers) in the R2PI spectrum are shifted to red and blue compared to those of the AAP monomer, respectively. These frequency shifts upon complexation between a water molecule and a specific binding site of AAP are also predicted by theoretical calculations. The spectral assignments of the origin bands in the R2PI spectra and the IR vibrational bands in the IR-dip spectra of the four lowest-energy conformers of AAP-(H2O)1, [syn- and anti-AAP(OH)-(H2O)1 and syn- and anti-AAP(CO)-(H2O)1], are aided by ab initio and time-dependent density functional theory (TDDFT) calculations. Further investigation of the IR-dip spectra has revealed a hydrogen-bonded NH stretching mode, supporting the presence of the syn-AAP(NH)-(H2O)1 conformer. Moreover, by employing IR-UV HB spectroscopy, we have reconfirmed the existence of the syn-AAP(NH)-(H2O)1 conformer, which happened to be buried underneath the broad background contributed by the AAP(OH)-(H2O)1 conformers. These observations have led us to conclude that all of the possible conformers of AAP-(H2O)1 have been found in this study.

MeSH terms

  • Acetaminophen / chemistry*
  • Gases / chemistry
  • Models, Chemical*
  • Molecular Conformation
  • Spectroscopy, Fourier Transform Infrared
  • Water / chemistry*

Substances

  • Gases
  • Water
  • Acetaminophen