Net deposition of mercury to the Antarctic Plateau enhanced by sea salt

Sci Total Environ. 2017 Apr 1:583:81-87. doi: 10.1016/j.scitotenv.2017.01.008. Epub 2017 Jan 23.

Abstract

Photochemically driven mercury (Hg) exchange between the atmosphere and the Antarctic Plateau snowpack has been observed. An imbalance in bidirectional flux causes a fraction of Hg to remain in the snowpack perennially, but the factors that control the amount of Hg sequestered on the Antarctic Plateau are not fully understood. We analyzed sub-annual variations in total Hg (HgT) deposition to Dome Fuji over the period of 1986-2010 using cold vapor inductively coupled plasma mass spectrometry and compared concentrations with those of sea salt components (Na+ and Cl-). HgT ranged from 0.12 to 5.19pgg-1 (n=78) and was relatively high when the Na+ concentrations were high in the same or underlying snow layers. A significant correlation (r=0.7) was found between the annual deposition fluxes of HgT and Na+. Despite different origins and behavior of Hg and sea salt, the near-synchronous increases in the concentrations and correlation between the fluxes suggest that sea salt can intervene in the air-snow Hg exchange and promote the net deposition of Hg in the Antarctic Plateau.

Keywords: Antarctic snow; Global Hg cycle; Oxidation; Photochemistry; Reduction; Sequestration.