Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface

Nanoscale. 2017 Feb 9;9(6):2279-2290. doi: 10.1039/c6nr06010b.

Abstract

Proteins in the proximity of inorganic surfaces and nanoparticles may undergo profound adjustments that trigger biomedically relevant processes, such as protein fibrillation. The mechanisms that govern protein-surface interactions at the molecular level are still poorly understood. In this work, we investigate the adsorption onto a gold surface, in water, of an amyloid-β (Aβ) peptide, which is the amyloidogenic peptide involved in Alzheimer's disease. The entire adsorption process, from the peptide in bulk water to its conformational relaxation on the surface, is explored by large-scale atomistic molecular dynamics (MD) simulations. We start by providing a description of the conformational ensemble of Aβ in solution by a 22 μs temperature replica exchange MD simulation, which is consistent with previous results. Then, we obtain a statistical description of how the peptide approaches the gold surface by multiple MD simulations, identifying the preferential gold-binding sites and giving a kinetic picture of the association process. Finally, relaxation of the Aβ conformations at the gold/water interface is performed by a 19 μs Hamiltonian-temperature replica exchange MD simulation. We find that the conformational ensemble of Aβ is strongly perturbed by the presence of the surface. In particular, at the gold/water interface the population of the conformers akin to amyloid fibrils is significantly enriched, suggesting that this extended contact geometry may promote fibrillation.