Electron correlation effects in third-order densities

Phys Chem Chem Phys. 2017 Feb 8;19(6):4522-4529. doi: 10.1039/c6cp07616e.

Abstract

The electronic energy of a system of fermions can be obtained from the second-order reduced density matrix through the contracted Schrödinger equation or its anti-Hermitian counterpart. Both energy expressions depend on the third-order reduced density matrix (3-RDM) which is usually approximated from lower-order densities. The accuracy of these methods depends critically on the set of N-representability conditions enforced in the calculation and the quality of the approximate 3-RDM. There are no benchmark studies including most 3-RDM approximations and, thus far, no assessment of the deterioration of the approximations with correlation effects has been performed. In this paper we introduce a series of tests to assess the performance of 3-RDM approximations in a model system with varying electron correlation effects, the three-electron harmonium atom. The results of this work put forward several limitations of the currently most used 3-RDM approximations for systems with important electron correlation effects.