BSMV as a Biotemplate for Palladium Nanomaterial Synthesis

Langmuir. 2017 Feb 21;33(7):1716-1724. doi: 10.1021/acs.langmuir.6b03341. Epub 2017 Feb 8.

Abstract

The vast unexplored virus biodiversity makes the application of virus templates to nanomaterial synthesis especially promising. Here, a new biotemplate, Barley stripe mosaic virus (BSMV) was successfully used to synthesize organic-metal nanorods of similarly high quality to those produced with Tobacco mosaic virus (TMV). The mineralization behavior was characterized in terms of the reduction and adsorption of precursor and nanocrystal formation processes. The BSMV surface-mediated reduction of Pd(2+) proceeded via first-order kinetics in both Pd(2+) and BSMV. The adsorption equilibrium relationship of PdCl3H2O- on the BSMV surface was described by a multistep Langmuir isotherm suggesting alternative adsorbate-adsorbent interactions when compared to those on TMV. It was deduced that the first local isotherm is governed by electrostatically driven adsorption, which is then followed by sorption driven by covalent affinity of metal precursor molecules for amino acid residues. Furthermore, the total adsorption capacity of palladium species on BSMV is more than double of that on TMV. Finally, study of the BSMV-Pd particles by combining USAXS and SAXS enabled the characterization of all length scales in the synthesized nanomaterials. Results confirm the presence of core-shell cylindrical particles with 1-2 nm grains. The nanorods were uniform and monodisperse, with controllable diameters and therefore, of similar quality to those synthesized with TMV. Overall, BSMV has been confirmed as a viable alternate biotemplate with unique biomineralization behavior. With these results, the biotemplate toolbox has been expanded for the synthesis of new materials and comparative study of biomineralization processes.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.