Chemisorption of a Strained but Flexible Molecule: Cyclooctyne on Si(001)

Chemistry. 2017 Apr 24;23(23):5459-5466. doi: 10.1002/chem.201605952. Epub 2017 Feb 16.

Abstract

The adsorption characteristics of a promising system for hybrid organic-inorganic interfaces, cyclooctyne on Si(001), is analyzed using density functional theory. The chemisorbed 'on-top' configuration, where a cycloadduct is formed between the ring triple bond and a surface dimer, is shown to be most stable. Less stable are 'bridge' and 'sublayer' modes featuring two molecule-surface bonds and the 'pedestal' mode with four bonds. Investigations with our recently proposed periodic energy decomposition analysis (pEDA) reveal that the four-bond configuration is destabilized by large deformation energies needed within molecule and surface as well as rather weak molecule-surface bonds. Dispersion interactions show significant influence on energy and structure of the configurations leading to an increased bending of the rather flexible molecules. Thus, features found in previous scanning tunneling microscopy experiments are conclusively explained with bent 'on-top' configurations and the 'pedestal' mode can be ruled out. A comparison to acetylene shows that the ring structure and the resulting strain of cyclooctyne are responsible for an increased reactivity of the larger adsorbate due to a pre-forming of the ring triple bond for surface bonding. In contrast, ring strain leads only to negligible electronic effects on the adsorbate-surface bonds. The computations highlight the need for in-depth theoretical analysis to understand adsorption characteristics of large, flexible molecules.

Keywords: bonding analysis; density functional calculations; dispersion; silicon; surface analysis.