Markov Blanket Feature Selection Using Representative Sets

IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2775-2788. doi: 10.1109/TNNLS.2016.2602365.

Abstract

It has received much attention in recent years to use Markov blankets in a Bayesian network for feature selection. The Markov blanket of a class attribute in a Bayesian network is a unique yet minimal feature subset for optimal feature selection if the probability distribution of a data set can be faithfully represented by this Bayesian network. However, if a data set violates the faithful condition, Markov blankets of a class attribute may not be unique. To tackle this issue, in this paper, we propose a new concept of representative sets and then design the selection via group alpha-investing (SGAI) algorithm to perform Markov blanket feature selection with representative sets for classification. Using a comprehensive set of real data, our empirical studies have demonstrated that SGAI outperforms the state-of-the-art Markov blanket feature selectors and other well-established feature selection methods.It has received much attention in recent years to use Markov blankets in a Bayesian network for feature selection. The Markov blanket of a class attribute in a Bayesian network is a unique yet minimal feature subset for optimal feature selection if the probability distribution of a data set can be faithfully represented by this Bayesian network. However, if a data set violates the faithful condition, Markov blankets of a class attribute may not be unique. To tackle this issue, in this paper, we propose a new concept of representative sets and then design the selection via group alpha-investing (SGAI) algorithm to perform Markov blanket feature selection with representative sets for classification. Using a comprehensive set of real data, our empirical studies have demonstrated that SGAI outperforms the state-of-the-art Markov blanket feature selectors and other well-established feature selection methods.

Keywords: Algorithm design and analysis; Bayes methods; Clustering algorithms; Learning systems; Markov processes; Probability distribution; Redundancy.

Publication types

  • Research Support, Non-U.S. Gov't