Quantification of real thermal, catalytic, and hydrodeoxygenated bio-oils via comprehensive two-dimensional gas chromatography with mass spectrometry

Talanta. 2017 Mar 1:164:626-635. doi: 10.1016/j.talanta.2016.11.005. Epub 2016 Nov 5.

Abstract

The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL-1 for major standards, except for hexanoic acid, which was set at 5ngµL-1. The GC×GC-TOFMS method provided good precision (<10%) and excellent accuracy (recovery range of 70-130%) for the quantification of individual hydrocarbons and oxygenated compounds in real bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process.

Keywords: Bio-oil quantification; Catalytic pyrolysis; Comprehensive two-dimensional gas chromatography; Mass spectrometry; Real bio-oil.