Relaxation in a Prototype Ionic Liquid: Influence of Water on the Dynamics

J Phys Chem Lett. 2017 Feb 16;8(4):715-719. doi: 10.1021/acs.jpclett.6b02871. Epub 2017 Jan 27.

Abstract

The influence of water on the relaxation of a prototype ionic liquid (IL) C8mimBF4 is examined in the IL-rich regime combining quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The QENS and MD simulations results for relaxation of IL and the equimolar mixture with water probed by the dynamics of the C8mim hydrogen atoms in the time range of 2 ps to 1 ns are in excellent agreement. The QENS data show that translational relaxation increases by a factor of 7 on the addition of water, while rotational relaxation involving multiple processes fitted by a KWW function with low β values is speeded up by a factor of 3 on the time scale of QENS measurements. The MD simulations show that the cation diffusion coefficient, inverse viscosity, and ionic conductivity increase on the addition of water, consistent with the very small change in ionicity. The difficulties in obtaining rotational and translational diffusion coefficients from fits to QENS experiments of pure ILs and IL-water mixtures are discussed.