Transcriptomic response of wolf spider, Pardosa pseudoannulata, to transgenic rice expressing Bacillus thuringiensis Cry1Ab protein

BMC Biotechnol. 2017 Jan 18;17(1):7. doi: 10.1186/s12896-016-0325-2.

Abstract

Background: Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in South China, plays a crucial role in the rice agroecosystem. In this study, we investigated transcriptome responses of the 5th instar spiders fed on preys maintained on Bt- and non-Bt rice.

Results: Comparative transcriptome analysis resulted in 136 differentially expressed genes (DEGs) between spiderlings preying upon N. lugens fed on Bt- and non-Bt rice (Bt- and non-Bt spiderlings). Functional analysis indicated a potential impact of Bt toxin on the formation of new cuticles during molting. GO and KEGG enrichment analyses suggested that GO terms associated with chitin or cuticle, including "chitin binding", "chitin metabolic process", "chitin synthase activity", "cuticle chitin biosynthetic process", "cuticle hydrocarbon biosynthetic process", and "structural constituent of cuticle", and an array of amino acid metabolic pathways, including "alanine, asparatate and glutamate metabolism", "glycine, serine and theronine metabolism", "cysteine and methionine metabolism", "tyrosine metabolism", "phenylalanine metabolism and phenylalanine", and "tyrosine and tryptophan biosynthesis" were significantly influenced in response to Cry1Ab.

Conclusions: The Cry1Ab may have a negative impact on the formation of new cuticles during molting, which is contributed to the delayed development of spiderlings. To validate these transcriptomic responses, further examination at the translational level will be warranted.

Keywords: Chitin; Cry1Ab; Cuticle; Development; Pardosa pseudoannulata; RNA-Seq.

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Endotoxins / genetics
  • Endotoxins / metabolism*
  • Hemolysin Proteins / genetics
  • Hemolysin Proteins / metabolism*
  • Oryza / genetics*
  • Pest Control, Biological / methods*
  • Plants, Genetically Modified / growth & development
  • Plants, Genetically Modified / metabolism*
  • Spiders / physiology*
  • Transcriptome / physiology*

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • insecticidal crystal protein, Bacillus Thuringiensis