Melting of large Pt@MgO(1 0 0) icosahedra

J Phys Condens Matter. 2017 Apr 12;29(14):145402. doi: 10.1088/1361-648X/aa5a1d. Epub 2017 Jan 18.

Abstract

On the basis of ab initio calculations, we present a new parametrisation of the Vervisch-Mottet-Goniakowski (VMG) potential (Vervisch et al 2002 Phys. Rev. B 24 245411) for modelling the oxide-metal interaction. Applying this model to mimic the finite temperature behaviour of large platinum icosahedra deposited on the pristine MgO(1 0 0), we find the nanoparticle undergoes two solid-solid transitions. At 650 K the 'squarisation' of the interface layer, while a full reshaping towards a fcc architecture takes place above 950 K. In between, a quite long-lived intermediate state with a (1 0 0) interface but with an icosahedral cap is observed. Our approach reproduces experimental observations, including wetting behaviour and the lack of surface diffusion.