Resistance to Thiacetazone Derivatives Active against Mycobacterium abscessus Involves Mutations in the MmpL5 Transcriptional Repressor MAB_4384

Antimicrob Agents Chemother. 2017 Mar 24;61(4):e02509-16. doi: 10.1128/AAC.02509-16. Print 2017 Apr.

Abstract

Available chemotherapeutic options are very limited against Mycobacterium abscessus, which imparts a particular challenge in the treatment of cystic fibrosis (CF) patients infected with this rapidly growing mycobacterium. New drugs are urgently needed against this emerging pathogen, but the discovery of active chemotypes has not been performed intensively. Interestingly, however, the repurposing of thiacetazone (TAC), a drug once used to treat tuberculosis, has increased following the deciphering of its mechanism of action and the detection of significantly more potent analogues. We therefore report studies performed on a library of 38 TAC-related derivatives previously evaluated for their antitubercular activity. Several compounds, including D6, D15, and D17, were found to exhibit potent activity in vitro against M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii clinical isolates from CF and non-CF patients. Similar to TAC in Mycobacterium tuberculosis, the three analogues act as prodrugs in M. abscessus, requiring bioactivation by the EthA enzyme, MAB_0985. Importantly, mutations in the transcriptional TetR repressor MAB_4384, with concomitant upregulation of the divergently oriented adjacent genes encoding an MmpS5/MmpL5 efflux pump system, accounted for high cross-resistance levels among all three compounds. Overall, this study uncovered a new mechanism of drug resistance in M. abscessus and demonstrated that simple structural optimization of the TAC scaffold can lead to the development of new drug candidates against M. abscessus infections.

Keywords: MmpL; Mycobacterium abscessus; TetR regulator; drug resistance mechanism; therapeutic activity; thiacetazone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antitubercular Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Drug Resistance, Bacterial / genetics
  • Microbial Sensitivity Tests
  • Mutation / genetics
  • Mycobacterium / drug effects*
  • Mycobacterium / genetics
  • Mycobacterium / metabolism*
  • Thioacetazone / pharmacology*

Substances

  • Antitubercular Agents
  • Bacterial Proteins
  • Thioacetazone