Stylus Tip Center Position Self-Calibration Based on Invariable Distances in Light-Pen Systems

Sensors (Basel). 2017 Jan 11;17(1):131. doi: 10.3390/s17010131.

Abstract

The light-pen coordinate measuring machine (LPCMM for short) is portable and flexible to measure features including invisible ones in-situ. Since different styluses are needed to measure different features and even during the process of measuring a single workpiece with complicated configurations, to improve the system measurement accuracy it is beneficial to calibrate the stylus tip center position after it is mounted to the light-pen before measurement in an industrial field. A novel and simple method aiming at self-calibrating the position of the tip center based on invariable distances is presented. The distinguishing feature of the proposed method is that the center position of the tip can be calibrated by using a kinematic seat with an inverted cone hole without any external reference and auxiliary devices. Calibration is based on that the distance between the tip center and that of any LED is invariable when the light-pen is swung smoothly with its spherical tip firmly touching the fixed cone seat. To ensure the repeatability of the algorithm some error constraint parameters are given. Based on invariable distances, the tip center position in the light-pen coordinate system can be obtained. Experiment results show that the self-calibration method has the advantage of good repeatability, with standard deviations 0.027, 0.023 and 0.014 mm in U, V and W directions, respectively. Experimental results of measuring a circle and a gauge block indirectly demonstrate the accuracy of the proposed self-calibration method.

Keywords: invariable distances; kinematic seat with an inverted cone hole; light-pen CMM; self-calibration; tip center position.