Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells

FASEB J. 2017 Apr;31(4):1744-1755. doi: 10.1096/fj.201601121R. Epub 2017 Jan 10.

Abstract

In the peripheral nervous system, Schwann cells (SCs) demonstrate surveillance activity, detecting injury and undergoing trans-differentiation to support repair. SC receptors that detect peripheral nervous system injury remain incompletely understood. We used RT-PCR to profile ionotropic glutamate receptor expression in cultured SCs. We identified subunits required for assembly of N-methyl-d-aspartic acid (NMDA) receptors (NMDA-Rs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and kainate receptors. Treatment of SCs with 40-100 µM glutamate or with 0.5-1.0 µM NMDA robustly activated Akt and ERK1/2. The response was transient and bimodal; glutamate concentrations that exceeded 250 µM failed to activate cell signaling. Phosphoprotein profiling identified diverse phosphorylated proteins in glutamate-treated SCs in addition to ERK1/2 and Akt, including p70 S6-kinase, glycogen synthase kinase-3, ribosomal S6 kinase, c-Jun, and cAMP response element binding protein. Activation of SC signaling by glutamate was blocked by EGTA and dizocilpine and by silencing expression of the NMDA-R NR1 subunit. Phosphoinositide 3-kinase/PI3K functioned as an essential upstream activator of Akt and ERK1/2 in glutamate-treated SCs. When glutamate or NMDA was injected directly into crush-injured rat sciatic nerves, ERK1/2 phosphorylation was observed in myelinated and nonmyelinating SCs. Glutamate promoted SC migration by a pathway that required PI3K and ERK1/2. These results identified ionotropic glutamate receptors and NMDA-Rs, specifically, as potentially important cell signaling receptors in SCs.-Campana, W. M., Mantuano, E., Azmoon, P., Henry, K., Banki, M. A., Kim, J. H., Pizzo, D. P., Gonias, S. L. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells.

Keywords: AMPA receptor; NMDA receptor; kainate receptor; migration; peripheral nerve injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cyclic AMP Response Element-Binding Protein / metabolism
  • Glutamic Acid / metabolism*
  • Glutamic Acid / pharmacology
  • Glycogen Synthase Kinase 3 / metabolism
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Ionotropic Glutamate / metabolism*
  • Ribosomal Protein S6 Kinases / metabolism
  • Schwann Cells / drug effects
  • Schwann Cells / metabolism*
  • Signal Transduction*

Substances

  • Cyclic AMP Response Element-Binding Protein
  • Receptors, Ionotropic Glutamate
  • Glutamic Acid
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Glycogen Synthase Kinase 3