Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study

Inorg Chem. 2017 Feb 6;56(3):1216-1224. doi: 10.1021/acs.inorgchem.6b02274. Epub 2017 Jan 9.

Abstract

Rhombohedral NASICON compounds with general formula Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) have been prepared using a conventional solid-state reaction and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and impedance spectroscopy. The partial substitution of Ti4+ by Sc3+ and Li+ in pristine LiTi2(PO4)3 increases unit-cell dimensions and the number of charge carriers. In Sc-rich samples, the analysis of XRD data and 6Li/7Li, 31P, and 45Sc MAS NMR spectra confirms the presence of secondary LiScO2 and LiScP2O7 phases that reduce the amount of lithium incorporated in the NASICON phase. In samples with x < 0.3, electrostatic repulsions between Li ions located at M1 and M3 sites increase Li mobility. For x ≥ 0.3, ionic conductivity decreases because of secondary nonconducting phases formed at grain boundaries of the NASICON particles (core-shell structures). For x = 0.2, high bulk conductivity (2.5 × 10-3 S·cm-1) and low activation energy (Ea = 0.25 eV) measured at room temperature make Li1.2Ti1.8Sc0.2(PO4)3 one of the best lithium ionic conductors reported in the literature. In this material, the vacancy arrangement enhances Li conductivity.