Longitudinal In Vivo Imaging of the Cerebrovasculature: Relevance to CNS Diseases

J Vis Exp. 2016 Dec 6:(118):54796. doi: 10.3791/54796.

Abstract

Remodeling of the brain vasculature is a common trait of brain pathologies. In vivo imaging techniques are fundamental to detect cerebrovascular plasticity or damage occurring overtime and in relation to neuronal activity or blood flow. In vivo two-photon microscopy allows the study of the structural and functional plasticity of large cellular units in the living brain. In particular, the thinned-skull window preparation allows the visualization of cortical regions of interest (ROI) without inducing significant brain inflammation. Repetitive imaging sessions of cortical ROI are feasible, providing the characterization of disease hallmarks over time during the progression of numerous CNS diseases. This technique accessing the pial structures within 250 μm of the brain relies on the detection of fluorescent probes encoded by genetic cellular markers and/or vital dyes. The latter (e.g., fluorescent dextrans) are used to map the luminal compartment of cerebrovascular structures. Germane to the protocol described herein is the use of an in vivo marker of amyloid deposits, Methoxy-O4, to assess Alzheimer's disease (AD) progression. We also describe the post-acquisition image processing used to track vascular changes and amyloid depositions. While focusing presently on a model of AD, the described protocol is relevant to other CNS disorders where pathological cerebrovascular changes occur.

Publication types

  • Video-Audio Media

MeSH terms

  • Alzheimer Disease / diagnostic imaging
  • Animals
  • Brain / blood supply*
  • Brain / diagnostic imaging*
  • Cerebrovascular Circulation*
  • Disease Progression
  • Humans