Saturation-compensated measurements for fluorescence lifetime imaging microscopy

Opt Lett. 2017 Jan 1;42(1):155-158. doi: 10.1364/OL.42.000155.

Abstract

Fluorophore saturation is the key factor limiting the speed and excitation range of fluorescence lifetime imaging microscopy (FLIM). For example, fluorophore saturation causes incorrect lifetime measurements when using conventional frequency-domain FLIM at high excitation powers. In this Letter, we present an analytical theoretical description of this error and present a method for compensating for this error in order to extract correct lifetime measurements in the limit of fluorophore saturation. We perform a series of simulations and experiments to validate our methods. The simulations and experiments show a 13.2× and a 2.6× increase in excitation range, respectively. The presented method is based on algorithms that can be easily applied to existing FLIM setups.