Realization of a High Sensitivity Microphone for a Hearing Aid Using a Graphene-PMMA Laminated Diaphragm

ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1237-1246. doi: 10.1021/acsami.6b12184. Epub 2017 Jan 5.

Abstract

Microphones for hearing aid systems are required to have high sensitivity, an appropriate bandwidth, and a wide dynamic range. In this paper, a high sensitivity microphone, 4 mm in diameter and using a multilayer graphene-PMMA laminated diaphragm that can be applied in hearing aids, is designed, optimized, and implemented. Typically, polyphenylene sulfide (PPS) has been used for the diaphragm of electret condenser microphones (ECM), and this method provides simple, low cost mass production. Generally, the sensitivity of the commercial 4 mm diameter ECM is about -30 to 35 dB (0 dB = 1 V/Pa). A microphone using a nanometer-thick graphene diaphragm has been found to have higher sensitivity than the conventional ECM. However, nanometer-thick multilayer graphene is vulnerable to large mechanical shocks or high sound pressures, and the practical production of nanometer-thick diaphragms also poses a challenge. However, if a multilayer graphene diaphragm of the same thickness as the conventional ECM is used, displacement during diaphragm vibration will be severely attenuated due to the high elastic modulus of graphene, and the microphone sensitivity will be greatly reduced. In this paper, we fabricate a multilayer graphene/poly(methyl methacrylate) (PMMA) laminated diaphragm with sensitivity higher than that of any other microphones currently available for hearing aids, with the appropriate bandwidth in the auditory range. The high sensitivity arises from the laminated structure of the thin graphene membrane with high elastic modulus and from the PMMA membrane with lower elastic modulus and higher dielectric constant. The optimal thickness ratio of the graphene-PMMA layered diaphragm was studied by both analytical and experimental methods, and then a fabricated diaphragm was assembled in a 4 mm diameter microphone package. The performance of the implemented microphone was evaluated, including the sensitivity and total harmonic distortion. It is demonstrated that the microphone using a multilayer graphene-PMMA diaphragm has an excellent sensitivity of -20 dB and a dynamic range of 90 dB, which is on average 9 dB higher than the microphone using the conventional ECM diaphragm.

Keywords: electret condenser microphone; graphene microphone; graphene−PMMA diaphragm; hearing aid; high sensitivity microphone.

MeSH terms

  • Graphite
  • Hearing Aids*
  • Noise
  • Polymethyl Methacrylate

Substances

  • Graphite
  • Polymethyl Methacrylate