Palladium-Catalysed Cross-Coupling Reactions Controlled by Noncovalent Zn⋅⋅⋅N Interactions

Chemistry. 2017 Apr 11;23(21):5033-5043. doi: 10.1002/chem.201604780. Epub 2017 Feb 13.

Abstract

Non-covalent interactions between halopyridine substrates and catalytically inert building blocks, namely zinc(II)-porphyrins and zinc(II)-salphens, influence the catalytic outcome of Suzuki-Miyaura and Mizoroki-Heck palladium-catalysed cross-coupling reactions. The weak Zn⋅⋅⋅N interactions between halopyridine substrates and zinc(II)-containing porphyrins and salphens, respectively, were studied by a combination of 1 H NMR spectroscopy, UV/Vis studies, Job-Plot analysis and, in some cases, X-ray diffraction studies. Additionally, the former studies revealed unique supramolecular polymeric and dimeric rearrangements in the solid state featuring weak Br⋅⋅⋅N (halogen bonding), C-H⋅⋅⋅π, Br⋅⋅⋅π and π⋅⋅⋅π interactions. The reactivity of halopyridine substrates in homogeneous palladium-catalysed cross-coupling reactions was found to correlate with the binding strength between the zinc(II)-containing scaffolds and the corresponding halopyridine. Such observation is explained by the unfavourable formation of inactive over-coordinated halopyridine⋅⋅⋅palladium species. The presented approach is particularly appealing for those cases in which substrates and/or products deactivate (or partially poison) a transition-metal catalyst.

Keywords: noncovalent interactions; palladium; porphyrin; pyridine; salphen.