The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly

J Virol. 2017 Feb 14;91(5):e02110-16. doi: 10.1128/JVI.02110-16. Print 2017 Mar 1.

Abstract

Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83-encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis-acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis-acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis-acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process.IMPORTANCE Virus nucleocapsid assembly usually requires specific cis-acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis-acting elements in the viral genome.

Keywords: ac83; baculovirus; cis-acting element; dsDNA virus; nucleocapsid assembly.

MeSH terms

  • Animals
  • Base Sequence
  • Capsid Proteins / genetics*
  • Conserved Sequence
  • Nucleocapsid / genetics
  • Nucleocapsid / metabolism*
  • Nucleopolyhedroviruses / physiology*
  • Protein Interaction Domains and Motifs
  • Protein Multimerization
  • Sequence Analysis, DNA
  • Sf9 Cells
  • Spodoptera
  • Virus Assembly
  • Virus Replication

Substances

  • Capsid Proteins