Effect of alcohol on the structure of cytochrome C: FCS and molecular dynamics simulations

J Chem Phys. 2016 Dec 21;145(23):235102. doi: 10.1063/1.4972065.

Abstract

Effect of ethanol on the size and structure of a protein cytochrome C (Cyt C) is investigated using fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. For FCS studies, Cyt C is covalently labeled with a fluorescent probe, alexa 488. FCS studies indicate that on addition of ethanol, the size of the protein varies non-monotonically. The size of Cyt C increases (i.e., the protein unfolds) on addition of alcohol (ethanol) up to a mole fraction of 0.2 (44.75% v/v) and decreases at higher alcohol concentration. In order to provide a molecular origin of this structural transition, we explore the conformational free energy landscape of Cyt C as a function of radius of gyration (Rg) at different compositions of water-ethanol binary mixture using MD simulations. Cyt C exhibits a minimum at Rg ∼ 13 Å in bulk water (0% alcohol). Upon increasing ethanol concentration, a second minimum appears in the free energy surface with gradually larger Rg up to χEtOH ∼ 0.2 (44.75% v/v). This suggests gradual unfolding of the protein. At a higher concentration of alcohol (χEtOH > 0.2), the minimum at large Rg vanishes, indicating compaction. Analysis of the contact map and the solvent organization around protein indicates a preferential solvation of the hydrophobic residues by ethanol up to χEtOH = 0.2 (44.75% v/v) and this causes the gradual unfolding of the protein. At high concentration (χEtOH = 0.3 (58% v/v)), due to structural organization in bulk water-ethanol binary mixture, the extent of preferential solvation by ethanol decreases. This causes a structural transition of Cyt C towards a more compact state.

MeSH terms

  • Alcohols / chemistry
  • Alcohols / pharmacology*
  • Cytochromes c / chemistry*
  • Cytochromes c / metabolism
  • Hydrophobic and Hydrophilic Interactions
  • Molecular Dynamics Simulation*
  • Protein Unfolding / drug effects
  • Spectrometry, Fluorescence

Substances

  • Alcohols
  • Cytochromes c