In vitro thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas

Phys Med Biol. 2017 Jan 21;62(2):517-538. doi: 10.1088/1361-6560/62/2/517. Epub 2016 Dec 21.

Abstract

Echogenic liposomes loaded with the thrombolytic recombinant tissue-type plasminogen activator (rt-PA) are under development for the treatment of ischemic stroke. These agents are designed to co-encapsulate cavitation nuclei to promote bubble activity in response to ultrasound exposure, and to enable localized delivery of thrombolytic. Stable cavitation improves the efficacy of the thrombolytic through enhanced fluid mixing. Echogenic liposomes that encapsulate air-filled microbubbles nucleate scant stable cavitation activity in response to 120 kHz intermittent ultrasound exposure, and have demonstrated thrombolytic efficacy equivalent to rt-PA alone. It was hypothesized that encapsulating octafluoropropane (OFP) gas within rt-PA-loaded liposomes instead of air will enhance ultrasound-mediated stable cavitation activity and increase thrombolytic efficacy compared to previous studies. The thrombolytic efficacy and cavitation activity nucleated from liposomes that encapsulate OFP microbubbles and rt-PA (OFP t-ELIP) was evaluated in vitro. Human whole blood clots were exposed to human fresh-frozen plasma alone, rt-PA (0, 0.32, 1.58, and 3.15 µg ml-1), or OFP t-ELIP at equivalent enzymatic activity, with and without exposure to intermittent ultrasound. Further, numerical simulations were performed to gain insight into the mechanisms of cavitation nucleation. Sustained ultraharmonic activity was nucleated from OFP t-ELIP when exposed to ultrasound. Furthermore, the thrombolytic efficacy was enhanced compared to rt-PA alone at concentrations of 1.58 µg ml-1 and 3.15 µg ml-1 (p < 0.05). These results indicate that OFP t-ELIP can nucleate sustained stable cavitation activity and enhance the efficacy of thrombolysis.

MeSH terms

  • Contrast Media / pharmacology
  • Fluorocarbons / pharmacology*
  • Humans
  • Liposomes / administration & dosage*
  • Liposomes / chemistry
  • Microbubbles
  • Thrombolytic Therapy / methods*
  • Thrombosis / diagnostic imaging
  • Thrombosis / drug therapy*
  • Tissue Plasminogen Activator / pharmacology*
  • Ultrasonography*

Substances

  • Contrast Media
  • Fluorocarbons
  • Liposomes
  • perflutren
  • Tissue Plasminogen Activator