Facet-Dependent Photoreduction on Single ZnO Crystals

J Phys Chem Lett. 2017 Jan 19;8(2):340-346. doi: 10.1021/acs.jpclett.6b02577. Epub 2016 Dec 30.

Abstract

Photocatalytic reactions occur at the crystal-solution interface, and hence specific crystal facet expression and surface defects can play an important role. Here we investigate the structure-related photoreduction at zinc oxide (ZnO) microparticles via integrated light and electron microscopy in combination with silver metal photodeposition. This enables a direct visualization of the photoreduction activity at specific crystallographic features. It is found that silver nanoparticle photodeposition on dumbbell-shaped crystals mainly takes place at the edges of O-terminated (0001̅) polar facets. In contrast, on ZnO microrods photodeposition is more homogeneously distributed with an increased activity at {101̅1̅} facets. Additional time-resolved measurements reveal a direct spatial link between the enhanced photoactivity and increased charge carrier lifetimes. These findings contradict previous observations based on indirect, bulk-scale experiments, assigning the highest photocatalytic activity to polar facets. The presented research demonstrates the need for advanced microscopy techniques to directly probe the location of photocatalytic activity.