Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula

Tree Physiol. 2017 Apr 1;37(4):491-500. doi: 10.1093/treephys/tpw114.

Abstract

Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the amount of water stored in the xylem parenchyma is an important reservoir for trees to buffer daily fluctuations in water relations.

Keywords: dehydration; diameter variation; extracellular freezing; frost stress; xylem parenchyma; xylem shrinkage.

MeSH terms

  • Desiccation*
  • Freezing*
  • Osmotic Pressure
  • Pinus sylvestris / physiology*
  • Populus / physiology*
  • Stress, Physiological*
  • Water / physiology
  • Xylem / physiology*

Substances

  • Water