Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles

Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.

Abstract

Plasmonic coupling-based electromagnetic field localization and enhancement are becoming increasingly important in chemistry, nanoscience, materials science, physics, and engineering over the past decade, generating a number of new concepts and applications. Among the plasmonically coupled nanostructures, metal nanostructures with nanogaps have been of special interest due to their ultrastrong electromagnetic fields and controllable optical properties that can be useful for a variety of signal enhancements such as surface-enhanced Raman scattering (SERS). The Raman scattering process is highly inefficient, with a very small cross-section, and Raman signals are often poorly reproducible, meaning that very strong, controllable SERS is needed to obtain reliable Raman signals with metallic nanostructures and thus open up new avenues for a variety of Raman-based applications. More specifically, plasmonically coupled metallic nanostructures with ultrasmall (∼1 nm or smaller) nanogaps can generate very strong and tunable electromagnetic fields that can generate strong SERS signals from Raman dyes in the gap, and plasmonic nanogap-enhanced Raman scattering can be defined as Raman signal enhancement from plasmonic nanogap particles with ∼1 nm gaps. However, these promising nanostructures with extraordinarily strong optical signals have shown limited use for practical applications, largely due to the lack of design principles, high-yield synthetic strategies with nanometer-level structural control and reproducibility, and systematic, reliable single-molecule/single-particle-level studies on their optical properties. All these are extremely important challenges because even small changes (<1 nm) in the structure of the coupled plasmonic nanogaps can significantly affect the plasmon mode and signal intensity. In this Account, we examine and summarize recent breakthroughs and advances in plasmonic nanogap-enhanced Raman scattering with metal nanogap particles with respect to the design and synthesis of plasmonic nanogap structures, as well as ultrasensitive and quantitative Raman signal detection using these structures. The applications and prospects of plasmonic nanogap particle-based SERS are also discussed. In particular, reliable synthetic and measurement strategies for plasmonically coupled nanostructures with ∼1 nm gap, in which both the nanogap size and the position of a Raman-active molecule in the gap can be controlled with nanometer/sub-nanometer-level precision, can address important issues regarding the synthesis and optical properties of plasmonic nanostructures, including structural and signal reproducibility. Further, single-molecule/single-particle-level studies on the plasmonic properties of these nanogap structures revealed that these particles can generate ultrastrong, quantifiable Raman signals in a highly reproducible manner.

Publication types

  • Research Support, Non-U.S. Gov't