Experimental method for the determination of adsorption-induced changes of pressure and surface stress in nanopores

J Phys Condens Matter. 2017 Feb 15;29(6):06LT01. doi: 10.1088/1361-648X/aa4e7d. Epub 2016 Dec 19.

Abstract

The change of surface stress is an important quantity characterising the behaviour of nanoporous systems, however, it is difficult to assess experimentally. In this letter we develop and demonstrate an experimental method for the determination of adsorption-induced changes of the surface stress in nanoporous materials. With the aid of ultrasonic measurements we determine the dependence of the adsorbate's longitudinal modulus [Formula: see text] on the adsorption-induced normal pressure, [Formula: see text], which is exerted by the adsorbate on the porous matrix. From this dependence we deduce the normal pressure at saturation, [Formula: see text], and thereby changes of the surface stress [Formula: see text] at the interface between the solid matrix and the liquid adsorbate. For the model system of argon in nanoporous glass (pore radius [Formula: see text] nm) the ultrasonic method reveals a value for [Formula: see text] that is in very good agreement with the theoretical value known for the argon-silica interface. The disclosure of this experimental method and its application on other systems will enable a better understanding of the behaviour of adsorbates in nanoporous materials.