Unusual C-I···O Halogen Bonding in Triazole Derivatives: Gelation Solvents at Two Extremes of Polarity and Formation of Superorganogels

Langmuir. 2017 Jan 10;33(1):311-321. doi: 10.1021/acs.langmuir.6b03691. Epub 2016 Dec 19.

Abstract

To investigate the influence of halogen bond (XB) on the gelation of a one-component organogel system, a new family of 5-iodo-1H-1,2,3-triazole and 1H-1,2,3-triazole gelators was designed and synthesized. The iodo gelators (1I, 3I) gelled various solvents at low concentrations and formed many superorganogels, whereas the hydrogenous gelators (1H, 3H) showed much poorer gelling performance. An X-ray analysis of the single crystals of two reference compounds (16I, 16H) reveals that the unusual C-I···O XB interaction is responsible for this difference. The results of spectroscopic examinations (XRD, SEM, 1H NMR, and UV) are well consistent with those of single-crystal analyses. Under the guidance of the XB interaction and the weak π-π interaction, 1I and 3I self-assemble to hexagonal columnar aggregations in the gel state, whereas 1H and 3H, driven by CH-π interactions, feature the formation of gels with a lamellar structure. The mechanical property of iodo gels is much better than that of hydrogenous gels under the same concentration. Gels from 1I respond to the stimuli of Hg2+, Cu2+, Zn2+, and Mg2+ as perchlorate salts, and gels from 1H are selectively responsive to Hg2+ solely.

Publication types

  • Research Support, Non-U.S. Gov't