Anion Bridging-Induced Structural Transformation of Cellulose Dissolved in Ionic Liquid

J Phys Chem Lett. 2016 Dec 15;7(24):5156-5161. doi: 10.1021/acs.jpclett.6b02504. Epub 2016 Dec 1.

Abstract

We performed structural investigations of cellulose mixed with 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) in the entire concentration range (0-100 mol %) by wide-angle X-ray scattering with the aid of quantum chemical calculations and 13C solid-state NMR spectroscopy. We particularly focused on a highly concentrated region (≥30 mol %), which has previously been overlooked. At concentrations of 15-30 mol %, a periodic peak corresponding to cellulose chain alignment emerged; this is associated with a lyotropic cholesteric liquid-crystalline phase. At concentrations of ≥30 mol %, the structure is transformed into ordered layers where OAc anions and Emim cations intercalate. This transformation is found to be driven by a change in the interaction between the IL anions and the OH groups of cellulose. At low concentrations, the anion mainly interacts with the OH group of cellulose in a 1:1 ratio, as previously reported; at high concentrations, the anions bridge the OH groups of two cellulose chains.