Inducing self-organized criticality in a network toy model by neighborhood assortativity

Phys Rev E. 2016 Nov;94(5-1):052304. doi: 10.1103/PhysRevE.94.052304. Epub 2016 Nov 7.

Abstract

Complex networks are a recent type of framework used to study complex systems with many interacting elements, such as self-organized criticality (SOC). The network nodes' tendency to link to other nodes of similar type is characterized by assortative mixing. Real networks exhibit assortative mixing by vertex degree, however, typical random network models, such as the Erdős-Rényi or the Barabási-Albert model, show no assortative arrangements. In this paper we introduce the notion of neighborhood assortativity as the tendency of a node to belong to a community (its neighborhood) showing an average property similar to its own. Imposing neighborhood assortative mixing by degree in a network toy model, SOC dynamics can be found. These dynamics are driven only by the network topology. The long-range correlations resulting from criticality have been characterized by means of fluctuation analysis and show an anticorrelation in the node's activity. The model contains only one parameter and its statistics plots for different values of the parameter can be collapsed into a single curve. The simplicity of the model allows us to perform numerical simulations and also to study analytically the statistics for a specific value of the parameter, making use of the Markov chains.