Site-Selective Surface-Enhanced Raman Detection of Proteins

ACS Nano. 2017 Jan 24;11(1):918-926. doi: 10.1021/acsnano.6b07523. Epub 2016 Dec 20.

Abstract

Strategies for protein detection via surface-enhanced Raman spectroscopy (SERS) currently exploit the formation of randomly generated hot spots at the interfaces of metal colloidal nanoparticles, which are clustered together by intrusive chemical or physical processes in the presence of the target biomolecule. We propose a different approach based on selective and quantitative gathering of protein molecules at regular hot spots generated on the corners of individual silver nanocubes in aqueous medium at physiological pH. Here, the protein, while keeping its native configuration, experiences an intense local E-field, which boosts SERS efficiency and detection sensitivity. Uncontrolled signal fluctuations caused by variable molecular adsorption to different particle areas or inside clustered nanoparticles are circumvented. Advanced electron microscopy analyses and computational simulations outline a strategy relying on a site-selective mechanism with superior Raman signal enhancement, which offers the perspective of highly controlled and reproducible routine SERS detection of proteins.

Keywords: SERS; biomolecules; computational simulations; crystal facets; phosphate buffer; plasmonic nanoparticles; silver nanocubes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Colloids / chemistry
  • Hydrogen-Ion Concentration
  • Metal Nanoparticles / chemistry
  • Models, Molecular
  • Particle Size
  • Proteins / analysis*
  • Pyrrolidines / chemistry
  • Silver / chemistry
  • Spectrum Analysis, Raman*
  • Surface Properties

Substances

  • Colloids
  • Proteins
  • Pyrrolidines
  • Silver