Comparison of quantitative defect characterization using pulse-phase and lock-in thermography

Appl Opt. 2016 Dec 1;55(34):D76-D86. doi: 10.1364/AO.55.000D76.

Abstract

Using optical excitation sources for active thermography enables a contactless, remote, and non-destructive testing of materials and structures. Currently, two kinds of temporal excitation techniques have been established: pulse or flash excitation, using mostly flash lamps; and periodic or lock-in excitation, using halogen lamps, LED, or laser arrays. From the experimental point of view, both techniques have their advantages and disadvantages. Concerning the comparison of the testing results of both techniques, only very few studies have been performed in the past. In this contribution, the phase values obtained at flat bottom holes in steel and CFRP and the spatial resolution measured at crossed notches in steel using flash and lock-in excitation are compared quantitatively.