Effect of Natural Organic Matter on Plutonium Sorption to Goethite

Environ Sci Technol. 2017 Jan 3;51(1):699-708. doi: 10.1021/acs.est.6b03587. Epub 2016 Dec 9.

Abstract

The effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mgC·L-1 and 50 mgC·L-1 natural organic matter (NOM), 10-9-10-10 M 238Pu, and 0.1 g·L-1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increased Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. The results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Carbon
  • Deferoxamine
  • Humic Substances*
  • Hydrogen-Ion Concentration
  • Plutonium / chemistry*

Substances

  • Humic Substances
  • Plutonium
  • Carbon
  • Deferoxamine