Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function

J Immunol. 2017 Jan 1;198(1):138-146. doi: 10.4049/jimmunol.1502487. Epub 2016 Nov 28.

Abstract

Regulatory T cells (Treg) attenuate dendritic cell (DC) maturation and stimulatory function. Current knowledge on the functional impact of semimature DC is limited to CD4+ T cell proliferation and cytokine production. Little is known about the molecular basis underpinning the functional effects of Treg-treated DC (Treg-DC). We present novel evidence that Treg-DC skewed CD4+ naive T cell polarization toward a regulatory phenotype and impaired CD8+ T cell allo-reactive responses, including their ability to induce target tissue damage in a unique in vitro human graft-versus-host disease skin explant model. Microarray analysis clustered Treg-DC as a discrete population from mature-DC and immature-DC, with 51 and 93 genes that were significantly over- or underexpressed, respectively, compared with mature-DC. Quantitative real-time PCR analysis revealed an intermediate expression level of CD38, CD83, CD80 and CD86 mRNA in Treg-DC, lower than mature-DC, higher than immature-DC. We also observed an attenuation of NF-κB pathway, an upstream regulator of the aforementioned genes, concomitant with reduced expression of two NF-κB-signaling related genes RELB and NFκBIZ, in the Treg-DC, together with an increased expression of Wnt5a, a negative regulator of DC differentiation. We further confirmed that the Treg-DC-mediated skewed CD4+ naive T cell polarization resulted from decreased IL-12 secretion by Treg-DC, which may be post-transcriptionally modulated by decreased expression of microRNA-155 in Treg-DC. To our knowledge, this is the first study demonstrating a transcriptional modulation of DC function by human Treg, partially via attenuation of the NF-κB signaling pathway and upregulation of Wnt5a, suggesting Treg may interfere with DC reprogramming during maturation, thereby modulating DC function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation / immunology*
  • Cells, Cultured
  • Coculture Techniques
  • Dendritic Cells / cytology
  • Dendritic Cells / immunology*
  • Flow Cytometry
  • Gene Expression Regulation / immunology
  • Humans
  • Lymphocyte Activation / immunology
  • NF-kappa B / immunology
  • NF-kappa B / metabolism
  • Oligonucleotide Array Sequence Analysis
  • Real-Time Polymerase Chain Reaction
  • Signal Transduction / immunology
  • T-Lymphocytes, Regulatory / immunology*
  • Transcription, Genetic
  • Wnt-5a Protein / immunology
  • Wnt-5a Protein / metabolism

Substances

  • NF-kappa B
  • Wnt-5a Protein