New Integrable 4D Quantum Field Theories from Strongly Deformed Planar N=4 Supersymmetric Yang-Mills Theory

Phys Rev Lett. 2016 Nov 11;117(20):201602. doi: 10.1103/PhysRevLett.117.201602. Epub 2016 Nov 11.

Abstract

We introduce a family of new integrable quantum field theories in four dimensions by considering the γ-deformed N=4 supersymmetric Yang-Mills (SYM) theory in the double scaling limit of large imaginary twists and small coupling. This limit discards the gauge fields and retains only certain Yukawa and scalar interactions with three arbitrary effective couplings. In the 't Hooft limit, these 4D theories are integrable, and contain a wealth of conformal correlators such that the whole arsenal of AdS/CFT integrability remains applicable. As a special case of these models, we obtain a quantum field theory of two complex scalars with a chiral, quartic interaction. The Berenstein-Maldacena-Nastase vacuum anomalous dimension is dominated in each loop order by a single "wheel" graph, whose bulk represents an integrable "fishnet" graph. This explicitly demonstrates the all-loop integrability of gamma-deformed planar N=4 SYM theory, at least in our limit. Using this feature and integrability results we provide an explicit conjecture for the periods of double-wheel graphs with an arbitrary number of spokes in terms of multiple zeta values of limited depth.