Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons

Physiol Rep. 2016 Nov;4(22):e13039. doi: 10.14814/phy2.13039.

Abstract

Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.1 channels in spinal motoneurons (MNs) localize within large somatic membrane clusters. However, their role in regulating motoneuron activity is not fully established in vivo. We have previously demonstrated marked Kv2.1 channel redistribution in MNs following in vitro glutamate application and in vivo peripheral nerve injury (Romer et al., 2014, Brain Research, 1547:1-15). Here, we extend these findings through the novel use of a fully intact, in vivo rat preparation to show that Kv2.1 ion channels in lumbar MNs rapidly and reversibly redistribute throughout the somatic membrane following 10 min of electrophysiological sensory and/or motor nerve stimulation. These data establish that Kv2.1 channels are remarkably responsive in vivo to electrically evoked and synaptically driven action potentials in MNs, and strongly implicate motoneuron Kv2.1 channels in the rapid homeostatic response to altered neuronal activity.

Keywords: C‐boutons; Kv2.1; voltage‐gated ion channels, activity dependent; α‐motoneuron.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Female
  • Glutamic Acid / metabolism
  • Homeostasis / physiology
  • Ion Channel Gating / physiology
  • Ion Channels
  • Motor Neurons / metabolism
  • Motor Neurons / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Shab Potassium Channels / metabolism*
  • Spinal Nerves / metabolism
  • Spinal Nerves / physiology*

Substances

  • Ion Channels
  • Shab Potassium Channels
  • Glutamic Acid