Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue<sup/>

Tissue Eng Part B Rev. 2017 Jun;23(3):225-236. doi: 10.1089/ten.TEB.2016.0316. Epub 2016 Dec 27.

Abstract

In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.

Keywords: cartilage; computer-aided tissue design; polymeric scaffolds.

MeSH terms

  • Cartilage, Articular*
  • Printing, Three-Dimensional
  • Regeneration
  • Tissue Engineering
  • Tissue Scaffolds