Cystic Fibrosis in the African Diaspora

Ann Am Thorac Soc. 2017 Jan;14(1):1-7. doi: 10.1513/AnnalsATS.201606-481FR.

Abstract

Identifying mutations that cause cystic fibrosis (CF) is important for making an early, unambiguous diagnosis, which, in turn, is linked to better health and a greater life expectancy. In patients of African descent, a molecular diagnosis is often confounded by the fact that the majority of investigations undertaken to identify causative mutations have been conducted on European populations, and CF-causing mutations tend to be population specific. We undertook a survey of published data with the aim of identifying causative CF mutations in patients of African descent in the Americas. We found that 1,584 chromosomes had been tested in only 6 countries, of which 876 alleles (55.3%) still remained unidentified. There were 59 mutations identified. Of those, 41 have been shown to cause CF, 17 have no associated functional studies, and one (R117H) is of varying clinical consequence. The most common mutations identified in the patients of African descent were: ΔF508 (29.4% identified in the United States, Colombia, Brazil, and Venezuela); 3120 + 1G>A (8.4% identified in Brazil, the United States, and Colombia); G85E (3.8% identified in Brazil); 1811 + 1.6kbA>G (3.7% identified in Colombia); and 1342 - 1G>C (3.1% identified in the United States). The majority of the mutations identified (81.4%) have been described in just one country. Our findings indicate that there is a need to fully characterize the spectrum of CF mutations in the diaspora to improve diagnostic accuracy for these patients and facilitate treatment.

Keywords: Americas; DNA sequencing; genetic testing; neonatal screening; targeted pharmacotherapy.

Publication types

  • Review

MeSH terms

  • Black People / genetics*
  • Cystic Fibrosis / diagnosis
  • Cystic Fibrosis / genetics*
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • Humans
  • Molecular Diagnostic Techniques
  • Mutation

Substances

  • CFTR protein, human
  • Cystic Fibrosis Transmembrane Conductance Regulator