A syntenic locus on buffalo chromosome 20: novel genomic hotspot for miRNAs involved in follicular-luteal transition

Funct Integr Genomics. 2017 May;17(2-3):321-334. doi: 10.1007/s10142-016-0535-7. Epub 2016 Nov 19.

Abstract

The developmental reorganization of ovarian follicular granulosa cells (GC) during follicular maturation, ovulation, and luteinization require a well-controlled regulation of dynamic gene expression profiles. Recently, microRNAs (miRNAs) were found to be key players of ovarian follicular dynamics. The current study aimed to understand the miRNA regulatory role in follicular-luteal transition by characterizing the miRNA profile through miRNA-seq at different follicular (small, medium, and large) and luteal (early, mid, and late) stages in Indian water buffaloes, mono-ovulatory animals like humans. A total of 517 miRNAs were identified in follicular granulosa cells (GC) and corpus luteum (CL) together. Among them, 2 unique and 40 novel miRNAs were in GC; 15 unique and 45 novel miRNAs were in CL. Among the remaining 415 annotated common miRNAs between GC and CL, 43 have showed significant (p < 0.05) differential expression between GC and CL. Particularly, 39 and 4 miRNAs showed higher expression in CL and GC, respectively, with respect to each other. Genome mapping analysis revealed that 71.7% of differential miRNAs having higher expression in CL compared to GC, and 93% of the unique miRNAs in CL were mapped to a short chromosomal region of 0.7 Mb (67.4 to 68.1 Mb) on chromosome 21 of cows which is syntenic to the buffalo chromosome 20. Clustering of all these miRNAs at this locus suggests it as a chromosomal hotspot for miRNAs involved in follicular-luteal transition, especially for CL physiological functions.

Keywords: Corpus luteum; Genomic hotspot; Granulosa cells; Ovary; miRNA.

MeSH terms

  • Animals
  • Buffaloes / genetics*
  • Cattle
  • MicroRNAs / genetics*

Substances

  • MicroRNAs