An injectable shear-thinning biomaterial for endovascular embolization

Sci Transl Med. 2016 Nov 16;8(365):365ra156. doi: 10.1126/scitranslmed.aah5533.

Abstract

Improved endovascular embolization of vascular conditions can generate better patient outcomes and minimize the need for repeat procedures. However, many embolic materials, such as metallic coils or liquid embolic agents, are associated with limitations and complications such as breakthrough bleeding, coil migration, coil compaction, recanalization, adhesion of the catheter to the embolic agent, or toxicity. Here, we engineered a shear-thinning biomaterial (STB), a nanocomposite hydrogel containing gelatin and silicate nanoplatelets, to function as an embolic agent for endovascular embolization procedures. STBs are injectable through clinical catheters and needles and have hemostatic activity comparable to metallic coils, the current gold standard. In addition, STBs withstand physiological pressures without fragmentation or displacement in elastomeric channels in vitro and in explant vessels ex vivo. In vitro experiments also indicated that STB embolization did not rely on intrinsic thrombosis as coils did for occlusion, suggesting that the biomaterial may be suitable for use in patients on anticoagulation therapy or those with coagulopathy. Using computed tomography imaging, the biomaterial was shown to fully occlude murine and porcine vasculature in vivo and remain at the site of injection without fragmentation or nontarget embolization. Given the advantages of rapid delivery, in vivo stability, and independent occlusion that does not rely on intrinsic thrombosis, STBs offer an alternative gel-based embolic agent with translational potential for endovascular embolization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Blood Coagulation
  • Blood Coagulation Tests
  • Catheters
  • Embolization, Therapeutic / methods*
  • Endovascular Procedures*
  • Hemostasis
  • Humans
  • Hydrogels / chemistry
  • Injections
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Nanocomposites / chemistry*
  • Rheology
  • Shear Strength
  • Silicates / chemistry
  • Swine
  • Thrombosis
  • Viscosity

Substances

  • Biocompatible Materials
  • Hydrogels
  • Silicates