Inhibitory Interactions of Aspalathus linearis (Rooibos) Extracts and Compounds, Aspalathin and Z-2-(β-d-Glucopyranosyloxy)-3-phenylpropenoic Acid, on Cytochromes Metabolizing Hypoglycemic and Hypolipidemic Drugs

Molecules. 2016 Nov 12;21(11):1515. doi: 10.3390/molecules21111515.

Abstract

Rooibos extract, due to its glucose and lipid lowering effects, has potential as a nutraceutical for improvement of metabolic dysfunction. Potential herb-drug interactions as a result of the use of natural products are of increasing concern. Cytochrome P450 enzymes, CYP2C8, CYP2C9, and CYP3A4, are important in the metabolism of hypoglycemic drugs, such as thiazolidinediones (TZDs) and sulfonylureas, and hypocholesterolemic drugs, such as atorvastatin. This study investigated the effects of rooibos extracts, prepared from "unfermented" and "fermented" rooibos plant material and two of the major bioactive compounds, Z-2-(β-d-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG) and aspalathin (ASP), on Vivid® recombinant CYP450 enzymes. Unfermented (GRT) and fermented (FRE) rooibos extracts inhibited the activity of CYP2C8 (7.69 ± 8.85 µg/mL and 8.93 ± 8.88 µg/mL, respectively) and CYP3A4 (31.33 ± 4.69 µg/mL and 51.44 ± 4.31 µg/mL, respectively) based on their respective IC50 concentrations. Both extracts dose- and time-dependently inhibited CYP2C8 activity, but only time-dependently inhibited CYP2C9. CYP3A4 showed concentration-dependent inhibition by ASP, GRT, and FRE at 25, 50, and 100 µg/mL concentrations. ASP, GRT, and FRE time-dependently inhibited CYP3A4 activity with GRT and FRE showing a more potent time-dependent inhibition, comparable to erythromycin. These findings suggest that herb-drug interactions may occur when nutraceuticals containing rooibos extracts are co-administered with hypoglycemic drugs such as TZDs, sulfonylureas, and dyslipidemic drug, atorvastatin.

Keywords: ">d-glucopyranosyloxy)-3-phenylpropenoic acid; CYP2C8; CYP2C9 and CYP3A4; Z-2-(β-; aspalathin; herb-drug interaction; rooibos.

MeSH terms

  • Aspalathus / chemistry*
  • Chalcones / pharmacology
  • Cytochrome P-450 Enzyme System / metabolism*
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation / drug effects
  • Herb-Drug Interactions
  • Hypoglycemic Agents / pharmacology
  • Hypolipidemic Agents / pharmacology*
  • Phenylpropionates / pharmacology
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology*

Substances

  • Chalcones
  • Hypoglycemic Agents
  • Hypolipidemic Agents
  • Phenylpropionates
  • Plant Extracts
  • aspalathin
  • 3-phenylpropionic acid
  • Cytochrome P-450 Enzyme System