Neural and non-neural contributions to sexual dimorphism of mid-day sleep in Drosophila melanogaster: a pilot study

Physiol Entomol. 2016 Dec;41(4):327-334. doi: 10.1111/phen.12134. Epub 2016 Feb 19.

Abstract

Many of the characteristics associated with mammalian sleep are also observed in Drosophila melanogaster Meigen, making the fruit fly a powerful model organism for studying the genetics of this important process. Included among the similarities is the presence of sexual dimorphic sleep patterns, which, in flies, are manifested as increased mid-day sleep ('siesta') in males compared with females. In the present study, targeted mis-expression of the genes transformer (tra) and tra2 is used to either feminize or masculinize specific neural and non-neural tissues in the fly. Feminization of male D. melanogaster using three different GAL4 drivers that are expressed in the mushroom bodies induces a female-like reduced siesta, whereas the masculinization of females using these drivers triggers the male-like increased siesta. A similar reversal of sex-specific sleep is also observed by mis-expressing tra in the fat body, which is a key tissue in energy metabolism and hormone secretion. In addition, the daily expression levels of takeout, an important circadian clock output gene, are sexually dimorphic. Taken together, these experiments suggest that sleep sexual dimorphism in D. melanogaster is driven by multiple neural and non-neural circuits, within and outside the brain.

Keywords: Drosophila; fat body; mushroom body; sexual dimorphism; sleep; takeout; transformer.