A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress

Oncotarget. 2016 Dec 13;7(50):83530-83543. doi: 10.18632/oncotarget.13171.

Abstract

Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.

Keywords: apoptosis; benzofuran; chondrosarcoma; endoplasmic reticulum (ER) stress; mitochondrial dysfunction.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / metabolism
  • Benzofurans / pharmacology*
  • Bone Neoplasms / drug therapy*
  • Bone Neoplasms / genetics
  • Bone Neoplasms / metabolism
  • Bone Neoplasms / pathology
  • Calpain / genetics
  • Calpain / metabolism
  • Cell Line, Tumor
  • Chondrosarcoma / drug therapy*
  • Chondrosarcoma / genetics
  • Chondrosarcoma / metabolism
  • Chondrosarcoma / pathology
  • Dose-Response Relationship, Drug
  • Endoplasmic Reticulum Stress / drug effects*
  • Humans
  • Male
  • Mice, Inbred BALB C
  • Mice, Nude
  • Mitochondria / drug effects*
  • Mitochondria / metabolism
  • Mitochondria / pathology
  • RNA Interference
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects
  • Time Factors
  • Transfection
  • Tumor Burden / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Apoptosis Regulatory Proteins
  • Benzofurans
  • Reactive Oxygen Species
  • Calpain