Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing

Methods Mol Biol. 2017:1507:81-94. doi: 10.1007/978-1-4939-6518-2_7.

Abstract

The clustered, regularly interspaced, short palindromic repeat (CRISPR)-associated (Cas) system represents an efficient tool for genome editing. It consists of two components: the Cas9 protein and a guide RNA. To date, delivery of these two components has been achieved using either plasmid or viral vectors or direct delivery of protein and RNA. Plasmid- and virus-free direct delivery of Cas9 protein and guide RNA has several advantages over the conventional plasmid-mediated approach. Direct delivery results in shorter exposure time at the cellular level, which in turn leads to lower toxicity and fewer off-target mutations with reduced host immune responses, whereas plasmid- or viral vector-mediated delivery can result in uncontrolled integration of the vector sequence into the host genome and unwanted immune responses. Cell-penetrating peptide (CPP), a peptide that has an intrinsic ability to translocate across cell membranes, has been adopted as a means of achieving efficient Cas9 protein and guide RNA delivery. We developed a method for treating human cell lines with CPP-conjugated recombinant Cas9 protein and CPP-complexed guide RNAs that leads to endogenous gene disruption. Here we describe a protocol for preparing an efficient CPP-conjugated recombinant Cas9 protein and CPP-complexed guide RNAs, as well as treatment methods to achieve safe genome editing in human cell lines.

Keywords: Cas9 conjugation; Cas9 protein purification; Dialysis; In vitro sgRNA synthesis; Protein delivery; T7E1 assay.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • CRISPR-Associated Protein 9
  • CRISPR-Cas Systems*
  • Cell-Penetrating Peptides / chemistry
  • Cell-Penetrating Peptides / metabolism*
  • Cloning, Molecular
  • Endonucleases / genetics
  • Endonucleases / metabolism*
  • Escherichia coli
  • Gene Editing / methods*
  • HEK293 Cells
  • Humans
  • Plasmids
  • RNA, Guide, CRISPR-Cas Systems / chemistry
  • RNA, Guide, CRISPR-Cas Systems / genetics
  • RNA, Guide, CRISPR-Cas Systems / metabolism*
  • Transformation, Bacterial

Substances

  • Bacterial Proteins
  • Cell-Penetrating Peptides
  • RNA, Guide, CRISPR-Cas Systems
  • CRISPR-Associated Protein 9
  • Cas9 endonuclease Streptococcus pyogenes
  • Endonucleases