An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance

Sci Adv. 2016 Oct 21;2(10):e1600495. doi: 10.1126/sciadv.1600495. eCollection 2016 Oct.

Abstract

Perovskite oxides with poor conductivity call for three-dimensional (3D) conductive scaffolds to demonstrate their superb reactivities for oxygen evolution reaction (OER). However, perovskite formation usually requires high-temperature annealing at 600° to 900°C in air, under which most of the used conductive frameworks (for example, carbon and metal current collectors) are reductive and cannot survive. We propose a preoxidization coupled electrodeposition strategy in which Co2+ is preoxidized to Co3+ through cobalt Fenton reaction in aqueous solution, whereas the reductive nickel framework is well maintained during the sequential annealing under nonoxidative atmosphere. The in situ-generated Co3+ is inherited into oxidized perovskites deposited on 3D nickel foam, rendering the monolithic perovskite electrocatalysts with extraordinary OER performance with an ultralow overpotential of 350 mV required for 10 mA cm-2, a very small Tafel slope of 59 mV dec-1, and superb stability in 0.10 M KOH. Therefore, we inaugurate a unique strategy for in situ hybridization of oxidative active phase with reductive framework, affording superb reactivity of perovskite electrocatalyst for efficient water oxidation.

Keywords: Perovskite; electrocatalysis; energy conversion; nanostructures; oxygen evolution reaction; water oxidation.