Nanostructured MoS2/BiVO4 Composites for Energy Storage Applications

Sci Rep. 2016 Nov 3:6:36294. doi: 10.1038/srep36294.

Abstract

We report the optimized synthesis and electrochemical characterization of a composite of few-layered nanostructured MoS2 along with an electroactive metal oxide BiVO4. In comparison to pristine BiVO4, and a composite of graphene/BiVO4, the MoS2/BiVO4 nanocomposite provides impressive values of charge storage with longer discharge times and improved cycling stability. Specific capacitance values of 610 Fg-1 (170 mAhg-1) at 1 Ag-1 and 166 Fg-1 (46 mAhg-1) at 10 Ag-1 were obtained for just 2.5 wt% MoS2 loaded BiVO4. The results suggest that the explicitly synthesized small lateral-dimensioned MoS2 particles provide a notable capacitive component that helps augment the specific capacitance. We discuss the optimized synthesis of monoclinic BiVO4, and few-layered nanostructured MoS2. We report the discharge capacities and cycling performance of the MoS2/BiVO4 nanocomposite using an aqueous electrolyte. The data obtained shows the MoS2/BiVO4 nanocomposite to be a promising candidate for supercapacitor energy storage applications.

Publication types

  • Research Support, Non-U.S. Gov't